
CERTIFICATE IN QUANTITATIVE FINANCE

Statistical Arbitrage Using Time Series

Analysis

by

Koundinya Vajjha

July 2017

University Web Site URL Here (include http://)
koundinya.vajjha@gmail.com


Contents

1 CVA calculation for an Interest Rate Swap 1

1.1 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 CVA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.2 IRS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Calculation of CVA for an IRS . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Step 1: Estimating probability of default for each tenor . . . . . . 3

1.2.2 Step 2: Extracting future LIBOR rates through HJM model. . . . 6

1.2.3 Step 3: Getting the LIBOR-OIS discounting curve. . . . . . . . . . 8

1.2.4 Step 4: Finding Mark-to-Market position and Exposures of the IRS. 9

1.2.5 Step 5: Repeating the above for many simulations of the forward
curve. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2.6 Step 6: CVA calculation. . . . . . . . . . . . . . . . . . . . . . . . 10

1.2.7 Step 7: Median and 97.5 Percentile Exposures . . . . . . . . . . . 11

2 Statistical Arbitrage Using Time Series Analysis 13

2.1 VAR(p) models: Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.1 Matrix form estimation of a VAR(p) model. . . . . . . . . . . . . . 14

2.2 VAR(p) models: Implementation. . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.1 Results and Comments . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3 Cointegration Analysis and Estimation : Theory . . . . . . . . . . . . . . 19

2.3.1 Step 1: Fitting a regression between the levels data. . . . . . . . . 19

2.3.2 Step 2: Checking stationarity of the residual: ADF test . . . . . . 19

2.3.3 Step 3: Engle-Granger Two Step procedure. . . . . . . . . . . . . . 20

2.3.4 Step 4: Fitting an Ornstien-Uhlenbeck process to the spread. . . . 20

2.4 Cointegration Analysis and Estimation : Implementation . . . . . . . . . 21

3 Backtesting 27

3.1 Introduction: the ‘Quantstrat’ library . . . . . . . . . . . . . . . . . . . . 27

3.1.1 Installing Quantstrat . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1.2 Overview of Quantstrat . . . . . . . . . . . . . . . . . . . . . . . . 28

3.1.3 Quantstrat backtesting workflow. . . . . . . . . . . . . . . . . . . . 28

3.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

A About the code and data 33

i



ii

Bibliography 35



Chapter 1

CVA calculation for an Interest

Rate Swap

In this chapter we start off with the working and implementation of CVA calculation for

an Interest Rate Swap, which is a mandatory addition for the CQF final project. In the

following sections, we present theory and outline, in detail, the calculation implemented

in the code. The relevant code file names containing the R implementation will be found

in the Appendix.

1.1 Theory

1.1.1 CVA

Credit Valuation Adjustment (CVA) is defined to be the adjustment in the values of

a risk-free portfolio and the true portfolio value when the possibility of counterparty

credit default is taken into account.

Risky value = Risk-free value− CV A

According to [1], “CVA has become a key topic for banks in the recent years due to

the volatility of credit spreads and the associated accounting and capital requirements.

However, whilst CVA calculations are a major concern for banks, they are also relevant

for other financial institutions and corporations that have significant amounts of OTC

derivatives to hedge their economic risks.”

Most of this section is a slight adaptation of Chapter 14 of [1].

1
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The standard and most general formula for calculating the CVA for an OTC derivative

is the following:

CVA = LGD

∫ T

0
EE∗(s)dPD(s)

where

1. LGD stands for the loss given default. This is the percentage amount of the

exposure expected to be lost if the counterparty defaults. Most often, this quantity

is set to be equal to (1−RR), where RR is the recovery rate.

2. EE∗ is the discounted expected exposure for the relevant dates s between now

(s = 0) and maturity (s = T ). The discounting carried out in computing EE is

the risk-free discounting.

3. dPD(s) is the density function of the probability of default of the counterparty.

Thus, the CVA is proportional to the Probability of Default, the Expected Exposure

and the Loss Given Default.

1.1.2 IRS

According to [2], an interest rate swap’s (IRS’s) effective description is a derivative

contract, agreed between two counterparties, which specifies the nature of an exchange

of payments benchmarked against an interest rate index. The most common IRS is a

fixed for floating swap, whereby one party will make payments to the other based on

an initially agreed fixed rate of interest, to receive back payments based on a floating

interest rate index. Each of these series of payments is termed a ’leg’, so a typical IRS

has both a fixed and a floating leg. The floating index is commonly an interbank offered

rate (IBOR) of specific tenor in the appropriate currency of the IRS, (for example,

LIBOR,EURIBOR etc.)

Figure 1.1: Graphical depiction of IRS cashflows between two counterparties.

According to its December 2014 statistics release, the Bank for International Settle-

ments reported that interest rate swaps were the largest component of the global OTC
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derivative market representing 60% of it, with the notional amount outstanding in OTC

interest rate swaps of $381 trillion, and the gross market value of $14 trillion.

1.2 Calculation of CVA for an IRS

We are given an Interest Rate Swap written on the 6M LIBOR over 5Y between a

Counterparties A and B. Counterparty B is a potentially risky. In order to set up our

problem, we start with a list of data which we are provided with, or assume.

• We assume the following CDS spread values (in basis points) across years 1 to

5 for the counterparty B. Also given are the discount factors for each year. We

bootstrap implied probability of default for counterparty B from these CDS spreads

and discount factors.

Maturity CDS spreads B D(0;T )

1Y 50.00 0.97
2Y 77.00 0.94
3Y 94.00 0.92
4Y 125.00 0.86
5Y 133.00 0.81

• In order to obtain a reasonable discounting curve for calculating the expected

exposure, we assume a static LIBOR-OIS spread of 80 bps.

• Recovery rate is assumed to be 40%.

• Notional is taken to be 1.

• Time period is half-a-year 0.5.

• Fixed-leg rate is taken to be 0.03 or 30 bps.

1.2.1 Step 1: Estimating probability of default for each tenor

Here is a list of notation we use for calculation.

1. We are given that the recovery rate is RR = 4000 bps. Set L = 1−RR.

2. The time points {tn}5n=0 are 0,1Y,2Y,3Y,4Y,5Y respectively.

3. Using the formula ∆tn = tn − tn−1 for n = 1, . . . , 5, we get the sequence of time

differences {∆tn}5n=1to be 1,1,1,1,1.
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4. Set the spreads {Sn}5n=1 to be 50,77,94,125,133. Sn is the observed spread at time

tn.

5. Denote by Pi the probability of survival from time period ti−1 until ti.

6. D(0, tn) is the value of the discount factor at time tn.

7. λi is the hazard rate in the period (ti−1, ti)

Next, we bootstrap the implied probabilities by using the following recursive scheme.

P1 = 1

P2 =
L

L+ ∆t1S1

Pn =

∑n−1
i=1 D(0, ti) (LPi−1 − Pi(L+ ∆tiSn))

D(0, tn)(L+ Sn∆tn)
+

LPn−1
(L+ Snδtn)

n ≥ 3

From the above we get the hazard rates through the following formula.

λi =
1

∆i
log

(
Pi
Pi−1

)

Figure 1.2: Term structure of hazard rates implied from CDS spreads.

The above a plot of the term structure of λ across each period. Below is the table of

computed values.
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ti Pi λi Si D(0, ti)

0 1.00000 - - -
1Y 0.99174 0.00830 50 0.97000
2Y 0.97462 0.01741 77 0.94000
3Y 0.95389 0.02150 94 0.92000
4Y 0.91821 0.03813 125 0.86000
5Y 0.89259 0.02830 133 0.81000

We interpolate the values of λi and obtain a linear interpolation function λ(t). Next we

compute the Survival Probability function from the following formula.

PrSrv(t) = e−
∫ t
0 λ(s)ds

Figure 1.3: Survival Probability Function.

Using the above function, we can derive the probability of default for each tenor through

the following formula.

PDi = PrSurv(ti)− PrSurv(ti+1) = Pi − Pi+1
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Tenor Probability of Default

0 0
1 0.004123658

1.5 0.005230369
2 0.007434312

2.5 0.008980192
3 0.009880491

3.5 0.012238286
4 0.015965548

4.5 0.016475360
5 0.013971912

Table 1.1: Probability of Default for each tenor

1.2.2 Step 2: Extracting future LIBOR rates through HJM model.

At time t, the notation L(t, Ti, Ti+1) stands for the LIBOR rate fixed at time Ti and

which matures at time Ti+1, which is when the cashflow is paid.

1. Step 1: First we define the volatility functions already derived in the HJM Model

MC.xlsm file provided. Those functions are as follows.

v1(t, τ) = 0.0064306548

v2(t, τ) = −0.0035565431 +−0.0005683999τ + 0.0001181915τ2 +−0.0000035939τ3

v3(t, τ) = −0.0047506715 + 0.0017541783τ +−0.0001415249τ2 + 0.0000031274τ3

Here t is the time parameter and τ is the tenor. Next I define the drift function

which goes into the SDE. This has the formula:

m(t, τ) =
3∑
i=1

vi(t, τ)

∫ τ

0
vi(t, s)ds

But for our numerical purposes, we have to integrate numerically each of the three

functions v1,v2 and v3 and then sum each of them up to get a numerically tractable

version of m.

2. Step 2: We work with the Musiela parameterization of the three parameter HJM

SDE. This is given by changing the maturity variable T to work with fixed tenors

τ = t− T . The final SDE is given by

df(t, τ) =

(
3∑
i=1

vi(t, τ)

∫ τ

0
vi(t, s)ds

)
dt+

3∑
i=1

vi(t, τ)dXi +
∂F (t, τ)

∂τ
dt (1.1)
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To descretize the above SDE, we denote by fi(τj) the forward rate for tenor τj on

date i. Say we have N tenors. We assume that the current days forward rates,

{f1(τj}Nj=1 are known. Now pick an appropriate discretized time scale δt and

generate the forward rates for appropriate tenors through the following recurrence

relation, which is got from discretizing the above SDE: For j in 1, . . . , N − 1 and

for i in 1, . . . ,M

fi+1(τj) = fi(τj) +m(t, τj)δt+
3∑

k=1

vk(t, τj)φ
(i)
k

√
δt+

fi(τj+1)− fi(τj)
τj+1 − τj

δt

Here φ
(i)
1 , φ

(i)
2 , φ

(i)
3 are standard normal variates chosen for date i. So if δt is chosen

to be 1 day, then the above recurrence relation gives the forward rate curves for

tenors 1 to N − 1 for the next M days. For tenor N , we use the same formula but

take the backward derivative instead of the forward derivative.

3. Step 3: Once we have the forward curves for each of the next M days, we can

then take the simulated LIBOR rate for a date and a tenor in the future. For

example, to get the 6M LIBOR rate a year from now, we choose the value in the

6M tenor column and for the 1 year date in the rows. Figure 1.4 shows simulated

forward curves for times 0,6M,1Y,1.5Y,2Y,2.5Y,3Y,3.5Y,4Y,4.5Y and 5Y, which

is what we need for the Expected Exposure calculation for the CVA calculation.

Figure 1.4: Simulated forward curves for every 6 months from now till 5 years.
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1.2.3 Step 3: Getting the LIBOR-OIS discounting curve.

In fact, for the CVA calculation, we just need the elements in the diagonal of the

simulated HJM output, i.e., we just need the 6M LIBOR 6 months from now, 1Y LIBOR

1 year from now and so on.

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0.5 0.0460 0.0447 0.0446 0.0447 0.0448 0.0448 0.0448 0.0448 0.0448 0.0448

1 0.0464 0.0464 0.0468 0.0473 0.0476 0.0479 0.0482 0.0485 0.0487 0.0490
1.5 0.0604 0.0608 0.0613 0.0616 0.0618 0.0620 0.0620 0.0621 0.0620 0.0620

2 0.0664 0.0668 0.0673 0.0676 0.0678 0.0679 0.0679 0.0678 0.0677 0.0676
2.5 0.0577 0.0593 0.0607 0.0618 0.0627 0.0634 0.0638 0.0641 0.0642 0.0642

3 0.0558 0.0579 0.0598 0.0613 0.0625 0.0634 0.0640 0.0644 0.0645 0.0644
3.5 0.0570 0.0585 0.0597 0.0606 0.0613 0.0618 0.0620 0.0620 0.0618 0.0614

4 0.0504 0.0522 0.0536 0.0548 0.0557 0.0563 0.0566 0.0567 0.0566 0.0562
4.5 0.0360 0.0377 0.0392 0.0403 0.0412 0.0419 0.0423 0.0425 0.0425 0.0422

5 0.0349 0.0366 0.0380 0.0391 0.0399 0.0404 0.0407 0.0408 0.0406 0.0403

Table 1.2: Simulated HJM output indicating the entries needed for EE calculation.

Once we have this rate f from the simulation, we need to convert it to a simple annualized

rate L, by the formula L = 0.5(e2f − 1). The 0.5 is the accrual factor. Now from the

above values, we subtract a constant spread of 80 bps in order to obtain the OIS curve.

Then we find the value of a zero-coupon bond by integrating over these forward rates,

and this value will be our discounting factor.

DFOIS = e−
∫ τ
0 OISsds

Tenor Forward rates DFOIS

0.5 0.045995 0.831618
1 0.046397 0.835909

1.5 0.061254 0.806242
2 0.067572 0.811292

2.5 0.062704 0.846009
3 0.063353 0.869107

3.5 0.061969 0.898002
4 0.056691 0.929847

4.5 0.042457 0.966234
5 0.040294 0.983983

Table 1.3: Results for this step
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1.2.4 Step 4: Finding Mark-to-Market position and Exposures of the

IRS.

As mentioned earlier, the fixed leg rate is chosen to be K = 0.03. Now the mark-to-

market of the Interest Rate Swap at tenor t is defined to be equal to

MtMt = NτDFOIS(L(t)−K)

Tenor MtM

0 0.10752
0.5 0.10245

1 0.09644
1.5 0.08403

2 0.06967
2.5 0.05518

3 0.04134
3.5 0.02610

4 0.01350
4.5 0.00665

5 0.00000

Table 1.4: Mark-to-Markets of the IRS across tenors.

The exposure is defined as Exposuret = max(MtMt, 0).

1.2.5 Step 5: Repeating the above for many simulations of the forward

curve.

Note that in the above, we carried out the calculations based on one simulation of the

forward curve. We now repeat the same calculations for many different simulations of

the forward curve through the HJM output. Figure 1.5 is a plot of Exposure values for

100 simulations of the forward curve.

If one takes the mean across each tenor and averages it and plots the average Exposure

across tenors, we get the plot in Figure 1.6.

The plot in figure 1.6 shows the expected exposure for the IRS. Taking a slightly higher

value of K will result in the familiar ”hump” shape for the exposure profile. But we

stick to the value of K = 0.03.
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Figure 1.5: Exposure profiles for 100 simulations of the forward curve, for K = 0.03

Figure 1.6: Average exposure across tenors, for K = 0.03

1.2.6 Step 6: CVA calculation.

Finally, once we have the expected exposure from the previous step, we can calculate

the Credit Valuation Adjustment for the Interest Rate Swap as follows.
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One notes that instead of calculating the exposure at the end points of each tenor, we

take the average across the end points of each tenor to obtain the Expected Exposure

in the “middle” of each tenor, i.e., at time points 0.25,0.75 and so on up till 4.75. In

order to do this, we note the following steps.

For each t = 0.25, 0.75, . . . , 4.75,

• Once we have the expected exposure (EE) from the previous step, we take the

rolling mean over 2 periods to obtain the expected exposure in the “middle” of

each tenor. Call this EE∗t

• On the output of DFOIS in Table 1.3, we perform log-linear interpolation and

exponentitate to obtain a function DFOIS(t).

• Once we have this function, evaluate this function at points 0.25,0.75 and so on

up till 4.75. Call this DFt

• Get the Probability of Default values in each tenor from Table 1.1 and call it PDt.

Finally calculate the CVA as

CVA =
4.75∑
t=0.25

PDtEE∗tDFt

Plugging in our values, we find that the CVA value is approximately 14.146$ on a

notional of 1$.

1.2.7 Step 7: Median and 97.5 Percentile Exposures

Figures 1.7 and 1.8 show the Median and 97.5 percentile exposure plots for each tenors.

One notes that the maximum exposures all occur at tenor 0. This is surely because of

the small fixed leg interest rate we have considered. Taking a slightly larger interest rate

would have resulted in the fimilar “hump” shape.

Also, if fixed leg interest rates are small, then the exposures and mark-to-market are

equal and almost linear.
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Figure 1.7: Median exposure across tenors, for K = 0.03

Figure 1.8: 97.5 percentile exposure across tenors, for K = 0.03



Chapter 2

Statistical Arbitrage Using Time

Series Analysis

As part of the final project, it is asked to identify cointegration and causality between

two or more time series, with the series considered being both returns and levels data.

In this regard, for the returns data, we implemented a Vector Auto Regression model

(VAR) and for the levels data, we implemented Error Correction Models (ECM), more

specifically, the Engle-Granger procedure and other stationarity tests.

This chapter is organized as follows: Section 2.1 concerns itself with the theory and im-

plementation of a VAR(p) model for a basket of returns data. Section 2.2 concerns itself

with the theory and implementation of VECM models to parameterize cointegration for

levels data. The final section contains the implementation and backtesting of a pairs

trading strategy which utilizes cointegrated pairs.

2.1 VAR(p) models: Theory

This section will closely follow [3]. Say we are given a univariate time series {yt}, whose

forecasts are what we are intersted in. It makes sense to begin forecasts that are linear

functions of a number p, of past observations.

ˆyT+1 = ν + α1yT + α2yT+2 + · · ·+ αpyT−p+1

Now since the true value yT+1 is generally not equal to the value ŷT+1, there is a forecast

error uT+1. So our equation can be written as

ˆyT+1 = ν + α1yT + α2yT+2 + · · ·+ αpyT−p+1 + uT+1

13
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Now assuming our numbers are realizations of random variables and that the same data

generation law prevails in each time period T , the above has the form of an autoregressive

process.

yt+1 = ν + α1yt + α2yt+2 + · · ·+ αpyt−p+1 + ut

where the quantitites y and u are now random variables. In order to get a true autore-

gressive process, we assume that the forecast errors ut and us ins different time periods

are uncorrelated.

Now, for multiple time series, (say k in number) we have the easy generalization of having

the same autoregressive relationship hold for each time series separately. Writing it in

vector notation,

yt = c+A1yt−1 +A2yt−2 + · · ·+Apyt−p + ut

where the l-periods back observation yt−l is called the l-th lag of y, c is a k × 1 vector

of constants, Ai is a time-invariant k × k matrix and ut is a k × 1 vector of error terms

called the K dimensional white noise process, which satisfies E[ut] = 0, E[utu
′
t] = Σu, a

non-singular matrix independent of time and E[utu
′
s] = 0 for t 6= s. This is the VAR(p)

process.

An important condition for a VAR(p) model is it’s stability. A VAR model is stable if

the reverse characteristic polynomial has no roots on and inside the unit circle. This is

equivalent to saying that no eigenvalue of each matrix Ap is of modulus greater than 1.

2.1.1 Matrix form estimation of a VAR(p) model.

It is possible to express a VAR(p) model in concise matrix form so that the matrices

can be estimated in one go. This section outlines this matrix form.

Given the VAR(p) model with k endogenous variables,

yt+1 = c + α1yt−1 + α2yt−2 + · · ·+ αpyt−p+1 + et

we can expand it to look like,
y1,t

y2,t
...

yk,t

 =


c1

c2
...

ck

+


a11,1 a11,2 · · · a11,k

a12,1 a12,2 · · · a12,k
...

...
. . .

...

a1k,1 a1k,2 · · · a1k,k




y1,t−1

y2,t−1
...

yk,t−1

+· · ·+


ap1,1 ap1,2 · · · ap1,k

ap2,1 ap2,2 · · · ap2,k
...

...
. . .

...

apk,1 apk,2 · · · apk,k




y1,t−p

y2,t−p
...

yk,t−p

+


e1,t

e2,t
...

ek,t


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Now one can rewrite this in a general way which includes T + 1 observations y0 to yT .

Y = BZ + U

where

Y =
[
yp yp+1 · · · yT

]
=


y1,p y1,p+1 · · · y1,T

y2,p y2,p+1 · · · y2,T
...

...
...

...

yk,p yk,p+1 · · · yk,T



B =
[
c A1 A2 · · · Ap

]
=


c1 a11,1 a11,2 · · · a11,k · · · ap1,1 ap1,2 · · · ap1,k

c2 a12,1 a12,2 · · · a12,k · · · ap2,1 ap2,2 · · · ap2,k
...

...
...

. . .
... · · ·

...
...

. . .
...

ck a1k,1 a1k,2 · · · a1k,k · · · apk,1 apk,2 · · · apk,k



Z =



1 1 · · · 1

yp−1 yp · · · yT−1

yp−2 yp−1 · · · yT−2
...

...
. . .

...

y0 y1 · · · yT−p


=



1 1 · · · 1

y1,p−1 y1,p · · · y1,T−1

y2,p−1 y2,p · · · y2,T−1
...

...
. . .

...

yk,p−1 yk,p · · · yk,T−1

y1,p−2 y1,p−1 · · · y1,T−2

y2,p−2 y2,p−1 · · · y2,T−2
...

...
. . .

...

yk,p−2 yk,p−1 · · · yk,T−2
...

...
. . .

...

y1,0 y1,1 · · · y1,T−p

y2,0 y2,1 · · · y2,T−p
...

...
. . .

...

yk,0 yk,1 · · · yk,T−p


and

U =
[
ep ep+1 · · · eT

]
=


e1,p e1,p+1 · · · e1,T

e2,p e2,p+1 · · · e2,T
...

...
. . .

...

ek,p ek,p+1 · · · ek,T


From the above, we can derive the following:
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• An OLS estimate for the matrix B.

B̂ = YZ′
(
ZZ′

)−1
• The Regression Residuals

ε̂ = Y− B̂Z

• Estimator of the residual covariance matrix

Σ̂ =
1

T

T∑
t=1

ε̂tε̂
′
t

• Covariance matrix of regression coefficients. Here ⊗ refers to the Kronecker Prod-

uct, and Vec denotes vectorization.

Ĉov(Vec(B̂)) = (ZZ′)−1 ⊗ Σ̂

So we have outlined enough theory to code up our own version of the concise matrix

regression estimation of the VAR(p) model. The relevant code file names containing the

R implementation will be found in the Appendix.

2.2 VAR(p) models: Implementation.

For the implementation part, we chose a basket of 5 stocks traded on the National Stock

Exchange (NSE) of India. According to a report made by the Times of India, these

four stocks were the largest gainers in the past two months i.e., from May till July of

2017. We decided to download 10 minute candle data from a broker in India called

Zerodha. Zerodha offers it’s clients an API whereby it is possible to download historical

data of options,futures and common equity traded across the Bombay Stock Exchange,

the National Stock Exchange and the Mercentile Exchange of India.

As a test case, we decided to implement a VAR(p) model on the five stocks with ticker

names CIPLA, ITC, DRREDDY, TATASTEEL and RELIANCE. The data frequency

was 10 minutes and the data was for two months in duration. Figures 2.1 and 2.2 show

the time series and returns for each of the above series.

Matrix form regression estimation and optimal lag selection.

In order to fit a VAR(p) model, we have to estimate the value of p, which is the optimal

lag to consider. common method to do this is to consider various lags for p and select
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Figure 2.1: Plot of RELIANCE, DRREDDY, CIPLA, TATASTEEL and ITC (from
top to bottom)

Figure 2.2: Plot of returns of RELIANCE, DRREDDY, CIPLA, TATASTEEL and
ITC

the value of p which minimizes a particular function called the “Information Criterion”.

There are many information criteria available, and which one to consider isn’t quite
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clear. For this exercise, we chose that value of p which minimizes the Akaike Information

Criterion, which is given by the following:

AIC(p) = log |Σ̂|+ n(np+ 1)

T

where n is the total number of stocks in the basket and T is the total number of obser-

vations.

2.2.1 Results and Comments

We use the ‘vars’ package in R to minimize the AIC and we get the optimal p to be

3. The same package also shows us that the fitted VAR model is stable because all the

roots of the characteristic polynomial have absolute value less than 1.

The following is the output for the matrix form regression which we have coded from

scratch (function ‘myVAR()’). The actual estimates for the beta coefficients can also be

accessed from the function. I have not printed them here.

Cipla Tata Steel ITC Reddy Reliance

Cipla 5.627x10−06 2.244x10−07 −1.638x10−07 8.635x10−07 1.208x10−07

Tata Steel 2.244x10−07 7.372x10−06 1.102x10−06 8.109x10−07 1.023x10−06

ITC −1.638x10−07 1.102x10−06 7.572x10−06 −2.076x10−07 3.967x10−07

Reddy 8.635x10−07 8.109x10−07 −2.076x10−07 4.555x10−06 3.173x10−07

Reliance 1.208x10−07 1.023x10−06 3.967x10−07 3.173x10−07 3.845x10−06

Table 2.1: Residual covariance matrix for the VAR(3) model

From Table 2.1 we can derive the Correlation Matrix of Residuals (dividing each column

by the leading covariance).

Cipla Tata.Steel ITC Reddy Reliance

Cipla 1.00 0.03 -0.03 0.17 0.03
Tata.Steel 0.03 1.00 0.15 0.14 0.19

ITC -0.03 0.15 1.00 -0.04 0.07
Reddy 0.17 0.14 -0.04 1.00 0.08

Reliance 0.03 0.19 0.07 0.08 1.00

Table 2.2: Residual correlation matrix for the VAR(3) model

From the above table we can see that there is little, if any, correlation between the

returns of the basket of stocks. As this project concerns itself with cointegration, this

basket of stocks would serve as a bad example for a cointegrated relationship. However,

one can see that the above analysis shows that this basket can be a good portfolio for

diversification. The simple VAR model can be recalibrated again at timely intervals to

check if there is any more correlation between the stocks as time progresses.



19

Such a basket of stocks can be a good source of income in non-turbulent times in the

market. However, as is commonly known, during a crash, all equities tend to move

together and there is high correlation. So as long as one has a hedge against sudden

movements, this basket of stocks can be thought of as a good investment. So this would

suggested that the VAR model is a good tool at identifying baskets of stocks which are

uncorrelated and thus shows possibility for diversification.

Since matters of correlation are subtle, this idea definitely warrants more serious and

rigorous study, which is unfortunately outside the scope of the current project.

2.3 Cointegration Analysis and Estimation : Theory

A system Yt of k time series is called cointegrated if there exists a vector βCoint of

weights such that the process β′CointYt = et is integrated of order 0, i.e., stationary. In

this section we outline the theory of how to estimate cointegration in time series.

To keep our analysis simple, we focus on the case k = 2, that is, estimating cointegration

in two time series, although it is possible to extend this analysis to more than two time

series as well.

2.3.1 Step 1: Fitting a regression between the levels data.

Given two time series {xt} and {yt}, the first step is to fit a regression between yt and

xt. We then obtain a coefficient β̂ of the regression. Set et to be the residuals

et = yt − β̂1xt − β̂0 = β′CointYt − µe

where βCoint = (1,−β̂1)′ and Yt = (yt, xt) and µe = β̂0

The idea is to check if the introduction of the coefficient β̂ results in the elimination of a

common stochastic process between xt and yt so the resulting residual will be stationary.

2.3.2 Step 2: Checking stationarity of the residual: ADF test

To check if the residual series is stationary, we can perform the Augmented Dickey-Fuller

(ADF) test on it. The ADF test is applied to the model

∆et = γet−1 + δ1∆et−1 + · · ·+ δp−1∆et−p+1 + εt
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Note that there are three main versions of the test, the other versions apart from the one

described above offer to add a constant “drift” and “trend”. However we don’t focus on

these. In the model described above, the ADF test tests the null hypothesis that γ = 0

contrast to the alternate hypothesis of γ < 0.

The test statistic for the ADF test DFτ = γ̂
SE(γ̂) is compared to a critical value cor-

responding to the confidence level. For a confidence level of 95%, the critical value is

-1.95. The ADF test also requires an estimation of the number of lags to be used, p. To

do this, as before, we estimate an optimal p based on the Akaike Information Criterion.

2.3.3 Step 3: Engle-Granger Two Step procedure.

The first step of the Engle-Granger procedure to test for cointegration was the last two

steps. Once we have a stationary residual for the regression we have performed, the next

step is to plug the residual into the ECM equation:

∆yt = β1∆xt − (1− α)et−1

And estimate the coefficients β1 and (1 − α) through another regression. It is then

required to confirm the significance of (1− α). If this is not significant, check the same

for the regression

∆xt = β1∆yt − (1− α)et−1

This step is required to identify the leading variable.

These two steps confirm the cointegration in a pair of time series.

2.3.4 Step 4: Fitting an Ornstien-Uhlenbeck process to the spread.

Once the residuals pass the Engle-Granger procedure we have evidence of a cointegrating

relationship between the stocks, and so the residuals are mean-reverting. This spread

can now be used to trade. However, there remains the question of entry and exit.

In order to find out the optimal entry and exit points, we fit an Ornstien-Uhlenbeck

process to the spread and infer the entry and exit points. The solution for the OU SDE

has an autoregressive term:

et+τ = (1− e−θτ )µe + e−θτet + εt,τ
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Where τ is observation frequency. To estimate the coefficients, we fit an AR(1) process

to it via Ordinary Least Squares:

et = C +Bet−1 + εt

From this we get, by comparing the above two equations, that

θ = − log(B)

τ

and

µe =
C

1−B

The scatter of the OU process is given by

σOU =

√
2θ

1− e−2θτ
V(et,τ )

To plot the trading bounds, we use

σeq ≈
σOU√

2θ

For potential entry/exit signals, we use µe ± σeq. For getting an idea of half-life, or the

speed of mean reversion, we take the following: τ̂ = log(2)
θ

2.4 Cointegration Analysis and Estimation : Implementa-

tion

In order to implement and test for cointegration between a pair of time series, we chose

two stocks of two companies Spice Jet and Indigo airlines, which are the two largest

private airlines in India.

Since a majority of the market share in the airlines business is held by one of these two

companies, it is reasonable to assume that their stock prices would be cointegrated. In

order to test this asssumption, we set out to implement the Engle-Granger procedure.

The idea was if there is indeed evidence of cointegration, then we could set up a trading

strategy which trades the mean-reverting spread. We consider time-series data of IN-

DIGO and SPICEJET at frequencies of daily, hourly and 10 minutes. Figure 2.3 shows

the stock prices at different frequencies.
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(a) Indigo 10 minute data (b) Spice Jet 10 minute data

(c) Indigo hourly data (d) Spice Jet hourly data

(e) Indigo daily data (f) Spice Jet daily data

Figure 2.3: Comparison of Indigo and Spice Jet stock prices over different frequencies.

The data for both series shows pretty noticeable cointegration in that both series tend

to move in the same direction across long periods of time. It is an interesting question

to ask if cointegration becomes more pronounced or less pronounced as frequency of

measurement increases.

• For the time series data we proceed to step 1 and fit a regression between the two

price series. Table 2.5 shows the results. Note that the coefficients are more or

less similar in each case.

So we can conclude, to a reasonable degree, that the frequency of observation does

not matter in the regression as all three give more or less the same regression
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Estimate Std. Error t value Pr(>|t|)
(Intercept) 667.4543 6.9245 96.39 0.0000
SPICEJET 4.1136 0.0609 67.59 0.0000

Table 2.3: 10 minute data

Estimate Std. Error t value Pr(>|t|)
(Intercept) 658.0440 15.6271 42.11 0.0000

spice.zoo[, 3] 4.1820 0.1384 30.23 0.0000

Table 2.4: 60 min data

Estimate Std. Error t value Pr(>|t|)
(Intercept) 643.8760 18.6062 34.61 0.0000

spice.zoo[, 3] 4.2857 0.2462 17.41 0.0000

Table 2.5: Daily data

Figure 2.4: Plot of daily spread between INDIGO-SPICEJET

coefficients and hence the same spread. We work with daily data from now on-

wards.The residuals of the regression on daily data is plotted in Figure 2.4. We

call this the “spread”.

• Now that we have the spread, our next task is to check if the spread is stationary.

For this, we look at the Augmented Dickey-Fuller test. Before performing the

test, we compute the optimal lag value through the AIC criterion via the “ur.df”

function in R. The optimal lag value was found to be 1.
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Our recoded ADF test function is implemented in the function ‘myADF()’. Running

the ‘myADF’ function on the residuals of the previous regression estimates that the

coefficient of et−1 divided by the standard error of estimation is -2.90181, which is

nothing but the ADF test statistic. This value is consistent with the output from

the ‘ur.df’ function as well. The latter is printed below.

###############################################

# Augmented Dickey-Fuller Test Unit Root Test #

###############################################

Call:

lm(formula = z.diff ~ z.lag.1 - 1 + z.diff.lag)

Residuals:

Min 1Q Median 3Q Max

-179.206 -8.491 0.098 9.756 88.444

Coefficients:

Estimate Std. Error t value Pr(>|t|)

z.lag.1 -0.03453 0.01188 -2.907 0.00384 **

z.diff.lag 0.15810 0.04876 3.242 0.00128 **

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 22.05 on 406 degrees of freedom

Multiple R-squared: 0.04001,Adjusted R-squared: 0.03528

F-statistic: 8.46 on 2 and 406 DF, p-value: 0.0002513

Value of test-statistic is: -2.9074

Critical values for test statistics:

1pct 5pct 10pct

tau1 -2.58 -1.95 -1.62

Note that -2.9 is smaller than -2.58 so we reject the null hypothesis that γ = 0.

So there is no unit root so the series is stationary.
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• Now that we’ve confirmed that the residuals are stationary, we move to step 2 of

the Engle-Granger procedure. So we perform a regression:

∆yt = β1∆xt − (1− α)et−1

Where yt is the price series for INDIGO, xt is the price series for SPICEJET and

et is the residual time series for the regression fitted in the previous steps.

Here is the output from the R code:

Call:

lm(formula = DeltaY ~ DeltaX + e)

Residuals:

Min 1Q Median 3Q Max

-184.306 -8.616 0.913 10.602 79.815

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.01193 1.11258 0.011 0.9915

DeltaX 4.51672 0.39375 11.471 <2e-16 ***

e 0.02947 0.01202 2.451 0.0147 *

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 22.45 on 406 degrees of freedom

Multiple R-squared: 0.2587,Adjusted R-squared: 0.2551

F-statistic: 70.86 on 2 and 406 DF, p-value: < 2.2e-16

So we see that the coefficient (1−α) is significant at the 95% confidence level. So

we pass the Engle-Granger procedure for cointegration for the spread.

• Next, we try to trade around the spread. Since the spread is mean reverting, we

fit an Ornstein-Uhlenbeck process to it to find out the entry/exit trade points.

As explained in section 2.3.4, we fit an AR(1) process to the spread residuals and

estimate the coefficients. The results are shown in Table 2.6:

One immediately notices that the maximum and minimum values of the spread are

both within than the prescribed bounds given by µe±σeq. So in order to optimize

the bounds, we chose the bounds of µe ± σOU . Figure 2.5 shows the spread along

with these new bounds.
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Value

1 θ 0.0299402858353395
2 µe 1.67143910977679
3 σOU 93.925191805238
4 σeq 383.830181784731
5 max(et) 268.596623259263
6 min(et) -234.374998780455
7 Half-Life 23.15

Table 2.6: Results of fitting the Ornstein-Uhlenbeck process to the spread.

To trade the spread, a strategy enter at the bounds and exit at the mean µe. Note

that since

et = yt − β̂1xt − β̂0 = β′CointYt − µe

where βCoint = (1,−β̂1)′ and Yt = (yt, xt),

1. Entering a long position on the spread is the same thing as going long 1 unit

of stock yt and going short β̂1 units of stock xt

2. Entering a short position on the spread is the same thing as going long β̂1

units of stock xt and going short 1 unit of stock yt.

The next chapter concerns itself with the backtesting of the strategy outlined in

this section.

Figure 2.5: Plot of the spread along with the trading bounds.



Chapter 3

Backtesting

3.1 Introduction: the ‘Quantstrat’ library

For backtesting of the strategy outlined in the previous chapter, we use the R library

‘Quantstrat’. In this section we outline how to install Quantstrat and it’s general features

and methods. Most of this section is an adaptation of Guy Yollin’s excellent lectures on

Quantstrat and Blotter [4].

3.1.1 Installing Quantstrat

As of the time of writing this report, Quantstrat isn’t available in the offical R repos-

itories. So in order to get working with it, it is recommended to work with a github

version of it. Here are the steps to install Quantstrat.

1. Install packages ‘dplyr’,‘devtools’ and ‘githubinstall’ through the usual R command

install.packages()

2. Run the command

githubinstall("blotter")

3. Run the command

githubinstall("quantstrat")

In both cases choose the repositories of user ‘braverock’.

27
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3.1.2 Overview of Quantstrat

Quantstrat is an R package which provides a generic infrastructure to model and backtest

signal-based quantitative strategies. It is a high-level abstraction layer (built on xts,

FinancialInstrument, blotter, etc.) that allows you to build and test strategies in very

few lines of code.

Key features:

• Supports strategies which include indicators, signals, and rules.

• Allows strategies to be applied to multi-asset portfolios.

• Supports market, limit, stoplimit, and stoptrailing order types.

• Supports order sizing, parameter optimization, transaction costs and much more.

3.1.3 Quantstrat backtesting workflow.

Here is a quick overview of the backtesting workflow of Quantstrat.

Figure 3.1: Basic strategy backtesting workflow of quantstrat.

1. Initialize a currency and instruments that contain market historical data.

2. Initialize a portfolio, account, orders and a strategy.

3. Add indicators. Indicators are quantitative values derived from market data. In

our case, indicators are the trading bounds derived from the OU process.

4. Interaction between indicators and market data are used to generate signals (e.g.

crossovers, thresholds).

5. Rules use market data, indicators, signals, and current account/portfolio charac-

teristics to generate orders.

6. Interaction between orders and market data generates transactions. These trans-

actions are then stored in the portfolio, account and orders objects.



29

3.2 Implementation

To implement the backtest, we first implement the indicators, signals and rules for the

Quantstrat system to analyze.

Figure 3.2: Plot of the spread along with the trading bounds.

1. Indicators: For our strategy, the indicators will be the mean spread and the first

standard deviations away from the mean, got from fitting the Ornstein-Uhlenbeck

process to the spread. These are denoted by the red, blue and green lines in Figure

3.2 respectively.

2. Signals: The signals of our strategy, in keeping with the dictum of “enter at the

bounds and exit at the mean”, will be

• Enter into a short position when there is a spread crossover with the upper

bound (green line) from above to below.

• Exit the short position as soon as there is a spread crossover with the mean

(red line) from above to below.

• Enter into a long position when there is a spread crossover with the lower

bound (blue line) from above to below.

• Exit the long position as soon as there is a spread crossover with the mean

(red line) from below to above.
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3. Rules: Finally, the rules of our strategy is to go long/short 3 units of the spread

with a transaction cost of 20 rupees. (These reflect actual numbers which the

author himself is comfortable trading! Also, the broker Zerodha in India charges

a flat transaction fee of 20 rupees.)

4. Initial Equity : We start with an initial equity of 1500 in our portfolio.

Running the backtest, here are the overall trade statistics.

Trading the spread

Num.Txns 21
Num.Trades 9

Net.Trading.PL 3420.692
Avg.Trade.PL 406.7436
Med.Trade.PL 417.1538

Largest.Winner 675.2896
Largest.Loser -20
Gross.Profits 3660.692
Gross.Losses 0

Std.Dev.Trade.PL 138.9632
Percent.Positive 100

Percent.Negative 0
Avg.Win.Trade 406.7436
Med.Win.Trade 417.1538

Avg.Daily.PL 406.7436
Med.Daily.PL 417.1538

Std.Dev.Daily.PL 138.9632
Ann.Sharpe 46.46451

Max.Drawdown -1186.922
Profit.To.Max.Draw 2.881985

Max.Equity 3959.582
Min.Equity -808.7863
End.Equity 3420.692

This shows an Annualized Sharpe Ratio of 46! However, there are many factors to

consider which make this slightly unreasonable.

1. This backtest is not an out-of-sample backtest. To perform that we shall need

more data, which is unfortunately not available since INDIGO only went public in

2015.

2. As the old economist’s joke goes, there cannot be a 10$ bill lying on the street, for

if there was, someone would have already picked it up. Such a big profit may be

unrealizable because there might be other players in the market who have already

profited from such a trade. Which is why trading at a higher frequency than daily

is preferable, which comes with it’s own problems.
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Here are other statistics.

Trade 1 2 3 4 5

Start 2015-12-09 00:00:00 2016-03-02 00:00:00 2016-06-02 09:15:00 2016-12-16 09:15:00 2017-02-16 09:15:00
End 2016-02-29 00:00:00 2016-05-12 09:15:00 2016-09-26 09:15:00 2017-01-30 09:15:00 2017-05-02 09:15:00

Init.Qty -3 3 -3 3 3
Init.Pos -3 3 -3 3 3

Max.Pos -6 9 -12 3 6
End.Pos 0 0 0 0 0

Closing.Txn.Qty 3 -3 9 -3 -6
Num.Txns 4 6 6 2 3

Max.Notional.Cost -141.2148 -729.8046 -1006.4567 -218.6253 -472.4139
Net.Trading.PL 509.0721 1282.4376 1012.4433 193.4288 423.3104

MAE -808.78630 -193.21445 -390.47164 -31.29293 -146.53476
MFE 1401.1361 1554.1873 2168.0725 265.0001 846.0957

Pct.Net.Trading.PL 3.6049497 1.7572343 1.0059483 0.8847502 0.8960583
Pct.MAE -5.7273497 -0.2647482 -0.3879667 -0.1431350 -0.3101830
Pct.MFE 9.922023 2.129594 2.154164 1.212120 1.791005

tick.Net.Trading.PL 8484.535 14249.307 8437.028 6447.626 7055.174
tick.MAE -80878.630 -19321.445 -39047.164 -3129.293 -14653.476
tick.MFE 140113.61 155418.73 216807.25 26500.01 84609.57
duration 7084800 secs 6167700 secs 10022400 secs 3888000 secs 6480000 secs

Table 3.1: Per-trade Statistics of the backtest.

Figure 3.3: Plot of consolidated account equity (initial equity is 1500).

From the above we can get the drawdown and returns plots.

Figure 3.5 shows the entire backtesting summary.
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Figure 3.4: Cumulative return, Daily Return and Drawdown waterfall plots.

Figure 3.5: Spread, Position, Cumulative PnL and Drawdown plot.



Appendix A

About the code and data

This appendix is intended to be a reference for parts of the code which correspond to

the sections outlined above.

Most of the code was written in R, with the exception of downloading the data, which

was done in python. The data was downloaded by using the Kite Connect API provided

by Zerodha, a discount brokerage in India.

Here is a list of code used:

• Chapter 1 : CVA calculation for an Interest Rate Swap. The entire code for this

chapter is given in the file ’cva calculation.R’ file provided.

• For sections 2.1 and 2.2, the estimation and implementation of VAR(p) models,

the relevant code is in time series 1.R file.

• For sections 2.3 and 2.4, the Engle-Granger procedure,ADF tests and fitting an

OU process to the spread are in the file ‘time series 2.R’

• For the final chapter on Backtesting, the relevant file is time series 3 backtesting.R.Note

that to run this file, one needs to install the quantstrat package. Instructions on

how to install this package are given in section 3.1.1.

Here is the list of data provided along with the project code:

• 10 minute candles data for RELIANCE,DRREDDY,ITC, CIPLA and TATAS-

TEEL from 2017-04-10 till 2017-07-07. This is used for the VAR(p) model imple-

mentation. However we use the close prices for the modelling.
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• Daily candles data for INDIGO and SPICEJET from 2015-11-11 till 2017-07-07.

The close prices for each day are used for the modelling. The whole candles data

is needed for backtesting, because it involves converting to OHLC format.

• Also provided is 10mins and hourly data for INDIGO and SPICEJET from 2017-

04-10 till 2017-07-07.

All files are in .csv format.
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