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Abstract. Harmonic analysis has at it’s heart the ubiquitous Fourier Trans-
form, which has many widespread applications and generalizations across var-

ious areas of pure and applied mathematics. On the real line R, it is given as
follows.

Ff(ξ) =

∫
R
e−2πixξf(x)dx

In this project report, we dissect the above definition of the Fourier Transform

and see how it generalizes to other structures. Indeed, R is a locally compact
topological group; the measure used is the translation invariant Lebesgue mea-

sure which is the Haar measure on R; the functions e−2πixξ out of which F
is fashioned are its irreducible representations; and F gives the Gelfand trans-

form on L1(R), and the decomposition of the regular representation of R into

its irreducible components. In this project, we analyze each of the statements
above in detail and see exactly how the abstraction of the Fourier Transform

takes place. In the process, we shall see the development of Representation

Theory of locally compact groups, along with other results of Harmonic Anal-
ysis..

.

1. Introduction

The Fourier transform on R is given by

Ff(ξ) =

∫
R
e−2πixξf(x)dx

In the following pages, we proceed with a dissection of the definition of the Fourier
Transform given above, and see how it can be generalized. For sake of clarity, let
us list the various aspects of the definition.

• R is a locally compact topological group.
• dx, the Lebesgue measure on R is a Haar measure.
• The functions e−2πixξ are the irreducible representations of R.
• The transform F is the Gelfand Transform of the Banach Algebra L1(R).
• The transform F gives the decomposition of the regular representation

of R into its irreducible components.

We shall now consider each of the above in detail.

2. Locally compact topological groups.

Definition 2.1. A topological group is a group G equipped with a topology
with respect to which the group operations are continuous; that is, (x, y) → xy is
continuous from G×G to G and x→ x−1 is continuous from G to G.
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Here are some basic general properties of topological groups.

Theorem 2.2. Let G be a topological group.

(1) The topology of G is invariant under translations and inversion; that is, if
U is open then so are xU , Ux, and U−1 for any x ∈ G.

(2) For every neighborhood U of 1 (the identity) there is a symmetric neigh-
borhood V of 1 such that V V ⊆ U . (A symmetric neighborhood A is one in
which is closed under taking inverses.)

(3) If H is a subgroup of G, then so is H.
(4) Every open subgroup of G is closed.
(5) If A and B are compact sets in G, so is AB.
(6) Suppose H is a subgroup of G. If H is closed, G/H is Hausdorff.
(7) If G is locally compact, so is G/H.
(8) If H is normal, G/H is a topological group.

(9) If G is T1 then G is Hausdorff. If G is not T1 then {1} is a closed normal

subgroup, and G/{1} is a Hausdorff topological group.

From (9) above we note that it is essentially no restriction to assume that G is

Hausdorff, for if not, we simply work with G/{1}. So we assume G is a Hausdorff
topological group from now. Now, if G is also locally compact with respect to its
topology, then we call G a locally compact Hausdorff topological group.

2.1. Examples of locally compact groups. Some examples include the additive
group Rn, closed subgroups of GLn(R) and the group T of all complex numbers of
modulus 1.
Also, the group Zω2 of countable copies of the group Z2 and the group Qp of p-adic
numbers also constitute examples.

3. Haar measures on locally compact groups

Definition 3.1. A left (resp. right) Haar measure on G is a nonzero Radon(i.e.,
inner regular and locally finite) measure µ on G that satisfies µ(xE) = µ(E) (resp.
µ(Ex) = µ(E)) for every Borel set E ⊂ G and every x ∈ G.

Let Cc(G) denote the set of all compactly supported functions on G. We set

C+
c (G) = {f ∈ G : f ≥ 0, f 6≡ 0}

Theorem 3.2. Let µ be a Radon measure on the locally compact group G, and let
µ̃(E) = µ(E−1).

(1) µ is a left Haar measure if and only if µ̃ is a right Haar measure
(2) µ is a left Haar measure if and only if

∫
Ly(f)dµ =

∫
fdµ for every f ∈

C+
c (G) and every y ∈ G. Where Lyf(x) = f(y−1x).

Proof. (1) is obvious. For (2), for any Radon measure µ we have
∫
Ly(f)dµ =∫

fdµy where µy(E) = µ(yE), as one sees by approximating f by simple functions.
So given this fact, if we assume µ is a left Haar measure, we have

∫
Ly(f)dµ =∫

fdµ. If we assume
∫
Ly(f)dµ =

∫
fdµ holds for all f ∈ C+

c (G), we have that it
holds for all f ∈ Cc(G) as Cc(G) is the linear span of C+

c (G). So one has µ = µy
by the uniqueness part of the Riesz Representation Theorem. �
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So the above theorem tells us that choosing to study either left or right Haar
measures is basically the same thing. The more common choice is to study left
Haar measures, and this is what we adhere to. The next natural question one can
ask is whether Haar measures exist for every group, and if they are unique. Both
these questions are answered in the affirmative by the following theorems.

Theorem 3.3. Every locally compact group G possesses a left Haar measure λ.

One also has the following two theorems.

Theorem 3.4. If λ is a left Haar measure on G, then λ(U) > 0 for every nonempty
open set U and

∫
fdλ > 0 for every f ∈ C+

c (G).

Theorem 3.5. If λ and µ are two left Haar measures on a group G then there
exists a constant c > 0 such that µ = cλ.

3.1. Explicit examples of Haar measures on groups. We state a general result
which covers quite a few cases of interest.

Theorem 3.6. Suppose G is a topological group with a smooth differentiable struc-
ture, i.e., a Lie group, and say the underlying manifold of G is an open subset of
RN . Say the left translations are given by affine maps: xy = A(x)y + b(x), where
A(x) is a linear transformation on RN and b(x) ∈ RN . Then |detA(x)|−1dx is a
left Haar measure on G, where dx denotes the Lebesgue measure on RN .

As applications of the above result, we have the following.

(1) dx/|x| is a Haar measure on the multiplicative group R\{0}.
(2) dx dy/(x2 + y2) is a Haar measure on the multiplicative group C\{0}.
(3) The Lebesgue measure

∏
i<j dαij is a left and right Haar measure on the

group of n × n real matrices (αij) such that αij = 0 for i > j and αii = 1
for 1 ≤ i ≤ n.

(4) |detT |−ndT is a left and right Haar measure on the group GLn(R) of in-
vertible linear transformations of Rn, where dT is the Lebesgue measure on
the vector space of all real n× n real matrices.

(5) The ax+ b group G is the group of all affine transformations x→ ax+ b
with a > 0 and b ∈ R. On G, da db/a2 is a left Haar measure and da db/a
is a right Haar measure.

(6) If G1, . . . , Gn are locally compact groups with left Haar measures λ1, ..., λn,
then left Haar measure on G =

∏
j Gj is obviously the Radon product

of λ1, . . . , λn, that is, the Radon measure on G associated to the linear
functional

f →
∫
. . .

∫
f(x1, . . . , xn)dλ1(x1) . . . dλn(xn)

. In case of compact groups, one can also allow infinitely many factors,
provided that one normalizes the Haar measures to have total mass 1.

(7) On the p-adic numbers Qp, one has the Haar measure

λ(E) = inf


∞∑
j=1

pmj : E ⊂
∞⋃
1

B(pmj , xj)


Where B(x, r) is the ball with center x and radius r.
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3.2. The Modular function. The modular function measures how far the Haar
measure λ on a group G fails to be right-invariant. If, for x ∈ G we define λx(E) =
λ(Ex), then λx is again a Haar measure. So by the uniqueness theorem there is a
unique number ∆(x) > 0 such that λx = ∆(x)λ. This function ∆ : G → (0,∞) is
called the modular function of the group G.

We have the following result about ∆.

Theorem 3.7. ∆ is a continuous homomorphism from G to R×, the multiplicative
group of nonzero reals. Furthermore, we have∫

Ry(f)dλ = ∆(y−1)

∫
fdλ

Where Ryf(x) = f(xy).

The above theorem can also be stated as follows, once we make the identification
dλ(x)→

∫
fdλ(x) .

dλ(xy−1) = ∆(y−1)dλ(x)

.
Given a left Haar measure λ, we have a right Haar measure ρ defined as ρ(E) =

λ(E−1). These two are related as follows.

Theorem 3.8. If ρ and λ are defined as above, then we have

dρ(x) = ∆(x−1)dλ(x)

The above formula can be restated as

dλ(x−1) = ∆(x−1)dλ(x)

Definition 3.9. A group G is called unimodular if ∆ ≡ 1, that is, a left Haar
measure is also a right Haar measure. Unimodularity is a highly desirable property
for a group to have. Obviously, Abelian and discrete groups are unimodular, but
there are other classes of groups which are also unimodular.

• If K is a compact subgroup of a group G, then ∆|K ≡ 1. This shows that
if G was a compact group, then G is unimodular.

• If G/[G,G] is compact, then G is unimodular.

3.3. Lp spaces, Convolutions and Approximate Identities. On the group G
and for 1 ≤ p ≤ ∞ we define Lp(G) to be the usual Lp space with respect to
the Haar measure λ on G, and with the usual Lp norm. Define the involution
f?(x) = ∆(x−1)f(x−1).
Now, for f, g ∈ L1(G), define

f ? g(x) =

∫
f(y)g(y−1x)dy

By Fubini’s theorem, it is easy to see that the above integral is absolutely convergent
for almost every x and that ‖f ? g‖1 ≤ ‖f‖1‖g‖1. With the convolution product
and the involution, we see that L1(G) becomes a Banach ?-algebra.

Convolution can be extended to other Lp spaces as well.

Theorem 3.10. Suppose 1 ≤ p ≤ ∞, f ∈ L1 and g ∈ Lp.

(1) We have f ? g ∈ Lp and ‖f ? g‖p ≤ ‖f‖1‖g‖p.
(2) If G is not unimodular, we have g ? f ∈ Lp when f has compact support.
(3) If G is unimodular, then (1) holds with f ? g replaced by g ? f also.
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(4) When p = ∞, f ? g is continuous, and under the conditions of (2) or (3),
so is g ? f .

(5) Suppose G is unimodular. If f ∈ Lp(G) and g ∈ Lq(G) where 1 < p, q <∞
and p−1 + q−1 = 1, then f ? g ∈ C0(G) and ‖f ? g‖sup ≤ ‖f‖p‖g‖q

(6) If G is unimodular, we have Lp ? Lq ⊂ Lr and that ‖f ? g‖r ≤ ‖f‖p‖g‖q
whenever p−1 + q−1 = r−1 + 1.

The last result (6) follows from the Riesz-Thorin interpolation theorem.
Suppose now that G is a discrete group and δ is the function defined by δ(e) = 1

and 0 otherwise. Then we can see that f ? δ = δ ? f = f for all f ∈ L1(G). When
G is not discrete, then there is no function with this property. However, we can
always find a net of functions (fα) such that for every g ∈ L1(G), fα ? g → g and
gα ? f → g in L1(G). Such an (fα) is called an approximate identity. The
following theorem gives a construction of an approximate identity.

Theorem 3.11. Let N be a neighbourhood base at e consisting of compact sym-
metric neighbourhoods. For each U ∈ N ,let fU = λ(U)−1χU . Then consider the
net (fU ). For every g ∈ Lp(G), 1 ≤ p <∞, we have fU ? g → g and g ? fU → g in
Lp(G).

4. Gelfand transforms.

In this section we digress a little and show how the Gelfand transform is a
generalization of the Fourier transform in the familiar case of the Banach algebra
L1(Z).

Definition 4.1. Let A be a Banach algebra.

• A linear functional φ on A is called multiplicative if φ is non-trivial and
φ(xy) = φ(x)φ(y) for all x, y ∈ A

• For a Banach algebra A, we denote MA to be the set of all multiplicative
linear functionals on A. MA becomes a compact Hausdorff space when
it inherits the weak∗ topology of the dual space of A. MA is called the
maximal ideal space of A.

• Let A be a Banach algebra. Then the mapping Γ : A → C(MA) defined
by

Γ(x)(φ) = φ(x)

is called the Gelfand transform of A.

It is true that the Gelfand transform of the Banach algebra L1(G) where G is
a locally compact commutative group is nothing but the Fourier transform on G
(The meaning of these statements will be made clear later). We shall prove this
fact for the Banach algebra L1(Z). The commutative Banach algebra L1(Z) has
norm

‖f‖ =

∞∑
n=−∞

|f(n)|

and the product is given by convolution

f ∗ g(n) =

∞∑
k=−∞

f(n− k)g(k)
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Theorem 4.2. The maximal ideal space of L1(Z) is homeomorphic to the unit
circle S1.

Proof. For each z ∈ S1, define φz : L1(Z)→ C by

φz(f) =

∞∑
n=−∞

f(n)zn

The functional φz is clearly bounded, linear and non-trivial. Moreover, a simple
application of Fubini’s theorem shows us that φz(f ∗g) = φz(f)φz(g). So φz belongs
to the maximal ideal space of L1(Z) Define Φ : S1 → ML1(Z) by Φ(z) = φz. We
show that Φ is a surjective homeomorphism.

For each n ∈ Z let fn be the function in L1(Z) such that fn(n) = 1 and 0
otherwise. It is easy to check that f0 is the identity of the Banach algebra L1(Z),
‖fn‖ = 1 for all n, and fn ∗ fk = fn+k for all n, k ∈ Z.
Φ is one-one : If we had Φ(z1) = Φ(z2), that is φz1 ≡ φz2 , then in particular, we
have φz1(f1) = φz2(f1), which shows that z1 = z2.
Φ is onto : Let φ ∈ ML1(Z) and let z0 = φ(f1). Clearly |z0| ≤ 1. On the other
hand, 1 = f1 ∗ f−1 implies that 1 = z0φ(f−1) and hence 1 = |z0||φ(f−1)| ≤ |z0|. So
z0 ∈ S1. Since φ is multiplicative,

φ(fn) = φ(f1 ∗ f1 ∗ · · · ∗ f1) = φ(f1)n = zn0

for all positive integers n. It follows from this and the identity 1 = fn ∗ f−n that
φ(fn) = zn0 for all integers n. If f ∈ L1(Z), then we can write

f =

∞∑
n=−∞

f(n)fn

with the series converging in L1(Z). By continuity and linearity of φ, we have

φ(f) =

∞∑
n=−∞

f(n)φ(fn) =

∞∑
n=−∞

f(n)zn0 = φz0(f)

for all f in L1(Z) and so Φ is onto.
If zα → z in S1, then by an easy ε− δ argument, we get

limα

∞∑
n=−∞

f(n)znα =

∞∑
n=−∞

f(n)zn

for every f ∈ L1(Z) and hence Φ(zα)→ Φ(z), showing that Φ is continuous. Again
since both S1 and ML1(Z) are compact Hausdorff, we get that Φ is a homeomor-
phism. �

If we identify the maximal ideal space of L1(Z) with S1, then the Gelfand trans-
form Γ : L1(Z)→ C(S1) takes the following form.

Γ(f)(z) =

∞∑
n=−∞

f(n)zn

where z ∈ S1. So z can be written as z = e−it for some t ∈ R. So the formula
becomes

Γ(f)(t) =

∞∑
n=−∞

f(n)e−int(4.1)
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This transformation takes f ∈ L1(Z) to C(S1).
For the general case, where Z is replaced by a locally compact Abelian group

G, one needs an appropriate definition of what the Fourier transform means for
an arbitary locally compact Abelian group. For this, we shall need the notion of
the ”dual group” of a locally compact Abelian group G. For this, we delve into
representation theory.

5. Representations on locally compact groups.

Looking at the proof given in the last section we notice that the functions eint

appearing and these seem to be connected to the group S1, (Explicitly, we have that
the dual group of Z is the group S1) and if we need to generalize the above proof
to an arbitary Abelian group G, then it is important that we find similar analogues
of the functions above. In order to solve this problem, we need to develop a little
bit of Representation theory.

Definition 5.1. Let G be a locally compact group. A unitary representation of
G is a homomorphism π from G into the group U(Hπ) of unitary operators on some
nonzero Hilbert space Hπ that is continuous with respect to the strong operator
topology.

So we have π(xy) = π(x)π(y) and π(x−1) = π(x)−1 = π(x)∗ and for which x→
π(x)u is continuous from G to Hπ for any u ∈ Hπ. Hπ is called the representation
space of π and its dimension is called the degree of π.
So a representation assigns to each element x ∈ G a unitary operator π(x) ∈ L(Hπ).

5.1. Examples of Representations.

(1) (a) G = S1 and H = C.
For each n ∈ Z, define πn(eiθ)z = einθz for all eiθ ∈ S1, z ∈ C

(b) G = R and H = C.
For each x ∈ R define πx(y)z = eixyz for all y ∈ R, z ∈ C.

These are the unitary representations of S1 and R respectively.
(2) G = GLn(R) and H = Cn. Define π(A)z = Az for all A ∈ G and z ∈ Cn.

Then π is a representation which is not unitary.
(3) G = U(n), the unitary group of matrices over C and H = Cn. Then

π(A)z = Az for all A ∈ U(n) and z ∈ Cn is a unitary representation.
(4) Let G be a locally compact group and H = L2(G). Define

(L(g)f)(s) = f(g−1s) for all g ∈ G and f ∈ H

Then g → L(g) is called the left regular representation of G, and it is
unitary because it is surjective and because of the invariance of the Haar
measure, we get 〈L(g)(f1), L(g)(f2)〉 = 〈f, g〉 , where 〈., .〉 is the inner
product on the Hilbert space L2(G). Also the continuity of g → L(g)f for
a fixed f can be proven easily.
Similarly, define

(R(g)f)(s) = f(sg), g ∈ G, f ∈ H

Exactly as above, g → R(g) is a unitary representation on G called the
right regular representation.
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We need a few more definitions.

Definition 5.2. Let G be a locally compact group.

(1) Let π1 and π2 be two representations on the group G. An intertwining
operator for π1 and π2 is a bounded linear map T : Hπ1

→ Hπ2
such that

Tπ1(x) = π2(x)T for all x ∈ G. The set of all intertwining operators is
denoted C(π1, π2). If C(π1, π2) contains a unitary operator, then we say
that π1 and π2 are unitarily equivalent.

(2) For a representation π, denote let C(π) := C(π, π). C(π) is called the
centralizer or communtant of π.

(3) Let M ⊂ Hπ be a closed subspace. We say M is an invariant subspace of
the representation π if we have π(x)M ⊂ M for all x ∈ G. If M 6= {0} is
invariant, then the restriction of π to M , πM (x) defines a representation of
G on M , called a subrepresentation of π

(4) If {πi}i∈I is a family of unitary representations, their direct sum ⊕πi is
the representation π on H =

⊕
Hπi

, defined by π(x)(
∑
vi) =

∑
πi(x)vi

(vi ∈ Hπi
.

(5) If π admits an invariant subspace that is nontrivial, then π is called re-
ducible, otherwise π is irreducible.

(6) If π is a unitary representation of G and u ∈ Hπ, the closed linear span Mu

of {π(x)u : x ∈ G} is called the cyclic subspace generated by u. Clearly
Mu is invariant under π. If Mu = Hπ, u is called a cyclic vector for π. π
is called a cyclic representation if it has a cyclic vector.

One can see that all one-dimensional representations are irreducible, for the
only subspaces of a one-dimensional Hilbert space are {0} and itself. We will see
that if G is a locally compact Abelian topological group, then all of its irreducible
representations are one-dimensional. To prove this, we shall require the following
fundamental lemma.

Lemma 5.3 (Schur’s Lemma). Let G be a locally compact topological group.

(1) A unitary representation π of G is irreducible if and only if C(π) contains
scalar multiples of identity.

(2) Suppose π1 and π2 are irreducible unitary representations of G. If π1 and
π2 are unitarily equivalent then C(π1, π2) is one dimensional, otherwise,
C(π1, π2) = {0}

Theorem 5.4. If G is a locally compact Abelian topological group, then all of its
irreducible representations are one dimensional.

Proof. If π is a representation of G, since G is Abelian the operators π(x) all
commute with one another. So π(x) ∈ C(π) for all x ∈ G. So now if π was
irreducible, by Schur’s lemma, we have that C(π) contains only scalar multiples of
the identity. So for every x ∈ G, there is a λx ∈ C such that (π(x))u = λxu. So any
one-dimensional subspace of Hπ is invariant under π. So we must have dimHπ = 1,
else π would not be irreducible. �

The irreducible unitary representations of a locally compact group G are the
basic building blocks of the harmonic analysis associated to G. Ofcourse, we need
to ensure that irreducible unitary representations always exist, and exactly this is
assured by the famous Gelfand-Raikov theorem.
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Theorem 5.5 (Gelfand-Raikov theorem). If G is any locally compact group, the
irreducible unitary representations of G separate points on G. That is, if x and y are
distinct points of G, there is an irreducible representation π such that π(x) 6= π(y).

Once this is guaranteed, the major questions of harmonic analysis are the fol-
lowing.

(1) Describe all the irreducible unitary representations of G, up to unitary
equivalence.

(2) Determine how arbitrary unitary representations of G can be built out of
irreducible ones.

(3) Given a specific unitary representation of G such as the regular represen-
tation, show concretely how to build it out of irreducible ones.

Though a serious study of the above three questions is out of the scope of our
project, we make a few general remarks on each of them.
The answer to question (1) shall depend strongly on the nature of the group in
question. There is a general technique that can be used to classify irreducible
representations of many groups, via induced representations.
As to question (2), one might hope that every unitary representation is the direct
sum of irreducible subrepresentations, which is the case when G is a compact group,
but unfortunately, this is not true in general. What is true however, is that every
unitary representation is a direct integral of irreducible representations, via the
Fourier inversion formula. Uniqueness of this decomposition is quite a delicate
issue.
For question (3), if we consider the regular representation, the answer is what is
called the ”Plancherel theorem” for the group G.

Resuming our study on locally compact Abelian groups, it follows from theorem
5.4 that if π is an irreducible unitary representation of an Abelian group G, then
we can take Hπ = C, and thus we shall have π(g) = λgI for some λg ∈ S1. So the

map g → λg is a continuous homomorphism from G to S1. Such a homomorphism
is called a character of G.

Definition 5.6. LetG be a locally compact Abelian group. The set of all characters

of G is denoted Ĝ, and is called the dual group of G. In general, for a non-abelian

group G, Ĝ is used to denote the set of equivalence classes of irreducible unitary
representations of G. Because all irreducible unitary representations of an Abelian
group G are one-dimensional, we can identify them as characters. So the two
notations are consistent.

We list a few results regarding Ĝ. For reasons of symmetry, we shall write

ξ(x) = 〈x, ξ〉 for ξ ∈ Ĝ.

Theorem 5.7. Let G be a locally compact Abelian group and let Ĝ be its dual
group.

(1) We can identify Ĝ with the set of all multiplicative linear functionals on
L1(G) via the identification

ξ −→ ξ(f) =

∫
ξ(x)f(x)dx(5.1)

Conversely, every multiplicative linear functional on L1(G) is given by in-
tegration against a character.
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(2) Ĝ is clearly an Abelian group under pointwise multiplication; it’s identity
is the constant function 1 and

〈x, ξ−1〉 = 〈x−1, ξ〉 = 〈x, ξ〉

(3) The topology of compact convergence on Ĝ, which makes its group opera-

tions continuous, coincides with the weak∗ topology which Ĝ inherits as a

subset of L∞. (Recall that we identify Ĝ to be the maximal ideal space of
L1(G), which are functionals, and so contained in the dual of L1(G), which
is contained in L∞(G).)

(4) Ĝ ∪ {0} is weak∗ compact. So Ĝ is a locally compact Abelian group.
(5) If G is compact and the Haar measure is normalized so that |G| = 1, then

we have that Ĝ is an orthonormal set in L2(G)

(6) If G is discrete then Ĝ is compact. If G is compact then Ĝ is discrete.

5.2. Examples of the dual group.

Theorem 5.8. Here are some of the examples of dual groups.

(1) R̂ ∼= R with the pairing 〈x, ξ〉 = e2πiξx.

(2) Ŝ1 ∼= Z with the pairing 〈α, n〉 = αn.

(3) Ẑ ∼= S1 with the pairing 〈n, α〉 = αn.

(4) If Zk is the additive group of integers mod k, then Ẑk ∼= Zk with the pairing
〈m,n〉 = e2πimn/k.

(5) If G1, . . . , Gn are locally compact Abelian groups, then

̂(G1 × · · · ×Gk) ∼= Ĝ1 × · · · × Ĝk

(6) From the above, we have R̂n ∼= Rn, Ẑn ∼= (S1)n, (̂S1)n ∼= Zn , Ĝ = G where
G is a finite abelian group.

Proof. (1) If φ ∈ R̂, then we have φ(0) = 1, so there exists an a > 0 such that
A =

∫ a
0
φ(t)dt 6= 0. We now have

Aφ(x) =

∫ a

0

φ(x+ t)dt =

∫ a+x

x

φ(t)dt

So φ is differentiable and we have

φ′(x) = A−1[φ(a+ x)− φ(x)] = cφ(x)

where c = A−1[φ(a) − 1]. It follows that φ(t) = ect, and since |φ| = 1, we
get c = 2πiξ for some ξ ∈ R

(2) Since we have S1 ∼= R/Z, via the identification of x ∈ R/Z with α = e2πix ∈
S1, the characters of S1 are just the characters of R which are trivial on Z.
The result follows.

(3) If φ ∈ Ẑ, then α = φ(1) ∈ S1 and φ(n) = φ(1)n = αn.
(4) The characters of Zk are the characters of Z that are trivial on kZ, hence

are of the form φ(n) = αn where α is a kth root of 1.
(5) Easy proof via the natural identification.

�
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5.3. The Fourier Transform. We finally come to the definition of the Fourier

transform. It will be convenient to employ a slightly different identification of Ĝ
with the maximal ideal space of L1(G) than the one given in (5.1). Namely, we

shall associate to each ξ ∈ Ĝ, the functional

ξ −→ ξ(f) = ξ−1(f) =

∫
〈x, ξ〉f(x)dx

The Gelfand transform (here denoted as F) on L1(G) then becomes the map

from L1(G) to C(Ĝ) defined by

Ff(ξ) = f̂(ξ) =

∫
〈x, ξ〉f(x)dx

Now using (4.1) as motivation, we define this map F to be the Fourier trans-
form on G. Thus we have found analogues of the functions eint in the case of Z
and its dual group S1, for the general case of a locally compact Abelian G and its

dual Ĝ. Those functions are nothing but the characters of G, that is, the elements

of Ĝ.
The Fourier transform satisfies the following properties.

Theorem 5.9. Let G be a locally compact Abelian group.

(1) The Fourier Transform is a norm-decreasing *-homomorphism from L1(G)

to C0(G). It’s range is a dense subspace of C0(Ĝ).
(2) The Fourier transform of a translation is given by

L̂yf(ξ) =

∫
〈x, ξ〉f(y−1x)dx = 〈y, ξ〉f̂(ξ)

(3) We also have

η̂f(ξ) =

∫
〈x, ξ〉〈x, η〉f(x)dx = f̂(η−1x) = Lηf(ξ)

Notice that (1) is the abstract formulation of the Riemann-Lebesgue lemma of
classical Fourier Analysis.

Definition 5.10. A function φ ∈ L∞(G) on a locally compact group G is of
positive type if it defines a positive linear functional on the Banach *-algebra
L1(G), i.e., that satistfies∫

(f∗ ? f)φ ≥ 0 for all f ∈ L1(G)

The set of all functions of positive type on G is denoted by P(G).

The Fourier transform can also be extended to complex Radon measures on G.

But of more interest to us is a similar construction for measures on Ĝ. If µ ∈M(Ĝ),

(where M(Ĝ) is the “measure algebra” on Ĝ, with product given by convolution)
we define the continuous bounded function φµ on G by

φµ(x) =

∫
〈x, ξ〉dµ(ξ)

Theorem 5.11 (Bochner’s Theorem). If φ ∈ P(G), then there is a unique positive

measure µ ∈M(Ĝ) such that φ = φµ =
∫
〈x, ξ〉dµ(ξ)
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Bochner’s theorem is useful in order to prove the Fourier Inversion Theorem.

For a locally compact Abelian group G, let B(G) = {φµ : µ ∈M(Ĝ)}.

Theorem 5.12 (Fourier Inversion Formula I). If f ∈ B(G) ∩ L1(G), then f̂ ∈
L1(Ĝ), and if Haar measure dξ on Ĝ is suitably normalized relative to the given

Haar measure dx on G, we have dµf (ξ) = f̂(ξ)dξ; that is;

f(x) =

∫
〈x, ξ〉f̂(ξ)dξ

When a Haar measure dx on G is given, a Haar measure dξ on Ĝ that makes
the above theorem true is called the dual measure of dx.

We have the following general result.

Theorem 5.13. If G is compact and Haar measure is chosen so that |G| = 1, then

the dual measure on Ĝ is the counting measure. If G is discrete and Haar measure

is chosen to be the counting measure, the dual measure on Ĝ is one so that |Ĝ| = 1.

Example 5.14. The groups S1 and Z are dual to each other, and if on S1 we
choose the measure 1/2πdθ to be the normalized Haar measure, then the counting
measure on Z is the dual measure. The Fourier inversion theorem on these spaces
now reads.

f̂(n) =

∫ 2π

0

f(θ)e−inθ
dθ

2π

and

f(θ) =

∞∑
n=−∞

f̂(n)einθ

Example 5.15. If G = Zk, the finite cyclic group has counting measure, its dual
measure is the counting measure divided by k, and the Fourier inversion theorem
reads:

f̂(m) =

k∑
0

f(n)e−2πimn/k

and

f(n) =
1

k

k∑
0

f̂(m)e2πimn/k

We have now the fundamental theorem in the L2 theory of the Fourier transform.

Theorem 5.16 (The Plancherel Theorem). For G Abelian, the Fourier transform

on L1(G)∪L2(G) extends uniquely to a unitary isomorphism from L2(G) to L2(Ĝ).

Remark 5.17. If G was a compact Abelian group and |G| = 1, then Ĝ is an or-
thonormal basis for L2(G).

Proof. We have that Ĝ is an orthonormal set by Theorem 5.7 (5). Now if we take

f ∈ L2(G) such that 0 =
∫
fξ = f̂(ξ) for all ξ, then f = 0 by the Plancherel

theorem. �

Theorem 5.18 (Hausdorff-Young Inequality). Suppose 1 < p ≤ 2 and p−1+q−1 =

1 then we have that if f ∈ Lp(G), then f̂ ∈ Lq(Ĝ) and ‖f̂‖q ≤ ‖f‖p
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5.4. Pontryagin Duality. For G a locally compact Abelian group, the elements

of Ĝ are characters on G, but we can equally well regard elements of G as characters

on Ĝ. More precisely, each x ∈ G defines a character Φ(x) on Ĝ by

〈ξ,Φ(x)〉 = 〈x, ξ〉

Φ is clearly a group homomorphism from G to
̂̂
G. It is a fundamental fact that

Φ is actually an isomorphism. This is the Pontryagin Duality theorem.

Theorem 5.19 (Pontryagin Duality). The map Φ : G → ̂̂
G defined above is an

isomorphism of topological groups.

As a corollary of the above theorem, we get another version of Fourier Inversion.

Theorem 5.20 (Fourier Inversion Theorem II). If f ∈ L1(G) and f̂ ∈ L1(Ĝ), then

f(x) = (̂f̂)(x−1) for a.e x. That is,

f(x) =

∫
〈x, ξ〉f̂(ξ)dξ

for almost every x. If f is continuous, these relations hold for every x.

As a final conclusion, we state a structure theorem for locally compact Abelian
groups.

Theorem 5.21 (Structure Theorem for Abelian Groups). Every locally compact
Abelian group has an open subgroup of the form Rn×G where G is a compact group.
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