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Introduction
The purpose of this talk is to state the Belyi theorem, explore the different facets of Belyi pairs and their
applications and explain the connection with dessin d’enfants.

Dessin d’enfants arise naturally from classical theorems of different areas of mathematics, and leads
us naturally into categorical equivalences between an appropriately defined category of dessins andmany
others. Indeed, it is due to these equivalences that it is possible to think of a dessin inmany different con-
texts: as graphs embedded nicely on surfaces, finite setswith certain permutations, certain field extensions
and some classes of algebraic curves (some defined overC and some overQ).

The term dessins d’enfants was coined by Grothendieck in his “Esquisse d’un Programme”, in which
a vast programme was laid out. In a nutshell, some of the categories mentioned above naturally carry an
action of Gal(Q/Q), the absolute Galois group of the rational field. This group therefore acts on the set
of isomorphism classes of objects in any of the equivalent categories; in particular one can define an action
of the absoluteGalois group on graphs embedded on surfaces. In this situation however, the nature of the
Galois action is really very mysterious - it is hoped that, by studying it, light may be shed on the structure
of Gal(Q/Q). It is the opportunity to bring some kind of basic, visual geometry to bear in the study of
the absolute Galois group that makes dessins d’enfants – embedded graphs – so attractive.

A major open problem in the study of the theory of dessin d’enfants is to obtain “invariants” of the
above Galois action: when can we say that two dessins are in the same Galois orbit?

The categoryDessins and various categories equivalent to it.
Abipartite graphG is a graphwhere we assign colours black andwhite to the vertices, such that the edges
only connect vertices of different colours. To every such bipartite graph we can talk of it’s “topological
realization”, |G |, which is a topological space where we assign intervals along the edges and glue them
appropriately.

Given such a bipartite graph, one can then talk of a “cell complex”C , which is a bipartite graph along
with a set of “faces” and a map which assigns a boundary for each of the faces. We can also talk about a
topological realization |C | of a cell complex C . This is done by attaching closed discs to the space |G |
using the specified boundary maps. One can think of it as “filling in” the ”holes” of |G | by closed discs
and making appropriate identifications.
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Example 0.1. Look at the cell complex as follows, where we label the edges by the integers. There are two
faces to this cell complex, which have boundary (2,3) and (5,6) respectively. We could also put a face on the
“outside”, which has boundary (1,1,2,3,4,4,5,6). The center of that face is placed “at infinity”, so we make
the identification of |C | with S2.
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Suppose now that we were to draw the following picture with a face “on the outside”.
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The topological realization of the above with a face “on the outside” is given as follows:
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We shall often place a ∗ inside the faces, even when they are not labeled, to remind the reader to
mentally fill in a disc.

It is possible to assemble the cell complexes into a category, once the proper notion of morphism is
defined. (For the curious, the “proper” notion of morphism turns out to be the triangulation respecting
morphism) The category Dessins is then defined as the subcategory of the above with objects those
cell complexes C for which the geometric realization |C | is a surface and morphisms the triangulation
respecting morphisms.

It turns out that the above categoryDessins is equivalent to the following categories:

• (Combinatorial) The category Setsσ,α,ϕ whose objects are the finite sets D equipped with three
distinguished permutations σ , α,ϕ satisfying σαϕ = 1, andwhose arrows are the equivariantmaps.
(Follows from the fact that the triangulation and colouring of a dessin naturally gives rise to three
permutations whose product is the identity.)

• (Topological)The categoryCov(P1) of ramified covers ofP1 having ramification set included in{0, 1,∞}
: Covers with ramification set included in {0, 1,∞} correspond to finite (unramified) covers of
the space with these points excluded. Also, finite unramified coverings correspond to fibers of
a basepoint with the monodromy action. With the base point ∗ = 1

2 (say), one has π1(P1 r
{0, 1,∞}, ∗) = 〈σ, α〉, the free group on the two distinguished generators σ and α; these are re-
spectively the homotopy classes of the loops t 7→ 1

2e
2iπt and t 7→ 1− 1

2e
2iπt . The category of finite,

right π1(P1 r {0, 1,∞}, ∗)-sets is precisely the categorySetsσ,α,ϕ already mentioned.

• (Complex Analytic) The categoryBelyi of compact Riemann surfaces with a meromorphic func-
tion whose ramification set is included in {0, 1,∞} : Up until now, we have not used the complex
structure on P1. Note that when p : S → R is a ramified cover, and R is equipped with a complex
structure, there is a unique complex structure on S such that p is holomorphic. So, given a com-
pact Riemann surface S, and a meromorphic function p on S, such that the ramification set of p is
contained in {0, 1,∞}, we get a dessin and conversely. The pair (S, p) is called a Belyi pair.

There is yet another equivalence of categories which we can write about, which is arithmetic in nature,
and the door to this is opened by the Belyi theorem.

Belyi’s theorem
We say that a smooth algebraic curve X is defined over a subfield K of C if it is isomorphic to the set of
zeros, in some affine or projective space over C, of a finite set of polynomials with coefficients in K ; we
then callK a field of definition ofX .

An algebraic number field (or simply a number field) is a subfieldK ofCwhich is a finite extension of
Q. The elements of such a fieldK are all algebraic overQ, soK is contained in the fieldQ of all algebraic
numbers, that is, the algebraic closure ofQ inC. It follows that if an algebraic curve X is defined over a
number field, then it is defined over Q. The converse is also true, since if X is defined over Q then the
finitely many coefficients of the defining polynomials all lie in some finite extension of Q, that is, in a
number field. Thus we have proved the following:

Lemma 1. An algebraic curve is defined over a number field if and only if it is defined over Q.
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In 1979, the Soviet mathematician Belyi gave a necessary and sufficient condition for a curve to be
defined overQ.

Theorem 2. Let X be a compact Riemann surface, that is, a smooth projective variety in PN (C) for some
N . X is defined over Q if and only if there is a non-constant meromorphic function β : X → P1 which is
ramified over at most three points.

Such a function β is called a Belyi function; if a Belyi function exists on a compact Riemann surface
X , this surface is called a Belyi surface or a Belyi curve. Thus, according to the theorem, Belyi curves
are those isomorphic to projective algebraic curves defined over number fields. The group Aut(P1) of
automorphisms of P1 acts triply transitively on P1,and so by composing βwith a suitable automorphism
we can (and generally will) assume that its critical values are contained in {0, 1,∞}. In the statement of
Belyi’s theorem, the smallest number field over whichX is defined is called the field of moduli forX .

There are shorter paths between dessins and belyi pairs which do not require us to go through the
categorySetsσ,α,ϕ described above. This is achieved via the construction of a Belyi dessin.

Belyi dessins
If β : X → P1 is a Belyi function on a compact Riemann surfaceX , then it is useful to to illustrate β by
means of amap onX , that is, a graph embedded inX , dividing the surface into a finite number of simply
connected faces.

We start with the bipartite map B1 on P1 with white and black vertices at 0 and 1, joined by an edge
along the unit interval, and a single face. This lifts, via β, to a bipartite map B = β−1(B1) on X : the
embedded graph consists of the white and black vertices, representing the zeros of β and β − 1, and the
deg(β) edges between them, consisting of the points where β takes values in the open interval (0, 1).

Since the vertices ofB1 both have valency 1, each vertex v ofB has valency equal to themultiplicity of
β at v. Similarly each face ofB is topologically a 2n-gon, formed from 2n triangular faces with a common
red vertex ∗ ∈ β−1(∞) (called the face center) where β has pole order n, that is, multiplicity n at ∗.

The image above shows anon-example in the casewhere the one or both the vertices are critical points,
which results in some of the pre-images becoming “glued”. Note that every other point in the interval
(0, 1) has 5 preimages.
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Figure 1: More Belyi dessins

We have a few more examples of Belyi func-
tions and their corresponding Belyi dessins in Fig-
ure 1.

The Galois action
The most exciting part of the Belyi theorem now
is that we get a natural action of the absolute Ga-
lois groupGal(Q/Q) on the dessins. Webriefly de-
scribe how this is:

Let M be a dessin, and let (X, f ) be a cor-
responding Belyi pair. The curve X may be re-
alized as an algebraic curve in Pk(C) for some k,
that is, as a solution of a system of homogeneous
algebraic equations in homogeneous coordinates
(x0 : x1 : · · · : xk). According to Belyi’s theorem
the coefficients of these equations may be chosen
as algebraic numbers. The function f is a ratio-
nal function in the variables x0, . . . , xk whose co-
efficients, oncemore according to Belyi’s theorem,
may be chosen as algebraic numbers. Now we act
on all the above algebraic numbers simultaneously
by an automorphism α ∈ Gal(Q/Q) , and we get
a new Belyi pair (Xα, f α) which produces a new
dessinM α.

Even more remarkably, this action we obtain is faithful, although we will not expand more on this
here.

Applications: A bound of Davenport-Stothers-Zannier
While the main interest in the study of Belyi functions is in studying the Galois action, there are applica-
tions of Belyi functions which make them interesting independently of any Galois theory.

This is one of the most spectacular applications of Belyi functions. Let P and Q be two complex
polynomials. We are interested in the following question that was posed in 1965: for various degrees of P
and Q, what is the smallest possible degree of the polynomial P3 − Q2?

Obviously, we may suppose that both P and Q are monic, and degP = 2m, degQ = 3m: then
deg(P3) = deg(Q2) = 6m, and the leading terms cancel. It was conjectured that if P3 6= Q2 , then
deg(P3 − Q2) ≥ m + 1, and this inequality is sharp, that is, the equality is attained for infinitely many
values ofm. It took 16 years to prove the last result!

We will prove sharpness using Belyi functions.
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Definition 3 (Maps). Amap is a dessin in which every white vertex has valency 2. In such cases, we simply
omit drawing the white vertex, implicitly assuming their existence at the “midpoint” of every edge. A Belyi
function corresponding to a map is called a pure Belyi function.

Theorem4. For every natural numberm, there are complex polynomials P andQ such that deg(P3−Q2) ≥
m + 1.

Proof. Recall again that we may suppose both P and Q are monic, and degP = 2m, degQ = 3m. Now
set R(x) = P3(x)− Q2(x) and consider the function

f (x) =
P3(x)
R(x)

so that f (x)− 1 =
Q2(x)
R(x)

We now ask when f can be a (pure) Belyi function and what the corresponding map looks like. For this
to happen, we should have the following:

• Since deg(P) = 2m, ifP has no repeated roots, then the corresponding dessin has 2mblack vertices,
each of degree 3.

• Since deg(Q) = 3m, ifQhas no repeated roots, then the correspondingdessin has 3mwhite vertices,
each of degree 2. So our hypothesised dessin is a map, with number of edges equal to 3m.

• Since we have V − E + F = 2, our map has F = 2 − 2m + 3m = m + 2 faces. One of the faces,
the fiouterfi one, has its center at infinity; the other centers are the roots of R; in order to have
degR = m + 1 we must ensure that all the faces except the outer one are of degree 1. (Where the
degree, or the valency deg(f ) of a face f is the number of edges incident to this face.)

This simple translation permits us to reformulate our problem in purely combinatorial terms:Does there
exist, for every m, a plane map with 3m edges, with 2m vertices of degree 3, and with all the faces except
the outer one having degree 1?
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The answer is yes! The image above shows two stages form = 6: first stage is to draw a tree with all
the internal vertices degree 3 and the second stage is to attach a loop to each leaf.

Tomake this formal, for a natural numberm, we plotm−1 vertices, and to these, we add2(m−1)+1 =
2m − 1 edges, so that the end result is a tree with internal vertices all of degree 3. We now end up with
m−1+2 = m+1 leaves, wherewe add a loop. Thuswe addm+1 new edges to complete the construction.
So in total, we have (2m− 1) + (m + 1) = 3m edges and 2m vertices of degree 3.

Now that we have shown the existence, the Belyi function corresponding to this map will now have
the required properties. Thus we have shown that the bound is sharp.

Note however, for example, that form = 5, there might be other ways in which the map could have
been constructed:

This clearly shows the orbits {a}, {b, c}, {d} so that the corresponding field of moduli for {a} and
{d} isQ and for the other orbit it is quadratic.
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