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The following document is an outline of modern homotopy theory following a big-picture
outline as given in one of Rick Jardine’s courses on the subject. Any errors are my own.

The simplicial category ∆ is the category whose objects are natural numbers (denoted
[n]) and morphisms from [m] to [n] are order preserving maps from the finite set {0, . . . ,m}
to the finite set {0, . . . , n}. This category is generated by the coface and codegeneracy
maps di : [n − 1] → [n] and sj : [n + 1] → [n]. This induces maps di : Xn → Xn−1 and
sj : Xn → Xn+1 for any simplicial set X whose n-simplices I denote by Xn.

1 Layer 1 - Simplicial Homotopy Theory
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• A (closed) model structure on a category consists of three distinguised classes of maps,
C,W ,F satisfying a bunch of axioms which are abstractions of the traditional homotopy
theory of spaces. There are model structures on each of the categories in the diagram
above. Every model structure on a category gives rise to the “homotopy category”
corresponding to the category. Objects of the homotopy category can be thought of
as homotopy types. So in Ho(T op), an object can be thought of as a space, upto
homotopy equivalence.

• sSet which is the category of contravariant functors ∆op → Set provides a combinato-
rial model for classical homotopy theory. The functors geometric realization | · | and
singular functor S are the “original pair” of adjoint functors. The functor S takes a
topological space T to the simplicial set [n] 7→ hom(|∆n|, T ) These two functors set
up a Quillen equivalence between sSet and T op i.e., an equivalence of “homotopy
theories”.
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• Instead of the category ∆, one can also consider other categories, such as the cube
category and so on. Most generally, presheaves on any test category (in the sense of
Grothendieck) gives rise to a model of standard homotopy theory.

• sAb is the category of contravariant functors ∆op → Ab. You can get an abelian group
from a set easily by taking the free abelian group functor. If we do that in all simplical
levels we get the functor Z in the diagram above. There is a forgetful functor u in the
opposite direction. This pair of functors sets up a Quillen adjunction i.e., the functor
u preserves cofibrations C and the functor Z preserves fibrations.

• We can make a (bounded) chain complex out of a simplicial abelian group A by taking
the n-chains An to be the group of n-simplicies of A and the boundary map ∂ : An →
An−1 to be ∂ =

∑
i(−1)idi induced by the face maps induces by di : [n − 1] → [n].

This gives us a chain complex in Ch+(Z). But we could do the same thing for simplcial
R-modules for a unitary ring R.

A0
∂←− A1

∂←− A2 . . .

The point is that both these categories sAb and Ch+(Z) are equivalent under the
Dold-Kan correspondence (note however, that the functor we gave above is not the one
involved in the D-K correspondence)

Thus, the classical construction of (integral singular) homology of spaces is simply a “diagram
chase”, culminating in H∗(ZSX) ' H∗(X,Z). Another note: the unit of the free-forgetful
adjunction h : X → uZX is called the Hurewicz map.

2 Layer 2 - Stable Homotopy Theory

We now make the layer a bit more complicated by adding spectra.
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• Recall that if X, Y ∈ T op∗ then the smash product of X and Y is

X ∧ Y = X × Y/X ∨ Y
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It turns out that smashing a space X ∈ T op with the circle S1 is something you want
to do:

ΣX ∼= X ∧ S1 ΣkX ∼= X ∧ Sk

Now for X ∈ T op, infinitely suspending it gives us a spectrum E = Σ∞X ∈ SptT op∗
.

A spectrum E (which is a list of spaces with suspension relation from one to the other)
has stable homotopy groups πn(E). Computing the stable homotopy groups of the
sphere spectrum:

S0, S1, S1 ∧ S1, . . .

is the dominant question in modern algebraic topology.

• Spectra in general have analogues in sSet as spectrum objects in pointed simplicial
sets, denoted SptsSet∗ and the homotopy category (once model structures on them are
defined) are equivalent.

• Given a spectrum object in simplicial sets, we could apply the free abelian group
functor Z everywhere to map S1∧En 7→ ZS1⊗ZEn levelwise. This again behaves like
the relationship between sSet and sAb.

• Spectrum objects in (bounded) chain complexes are equivalent to unbounded chain
complexes Ch. The Dold-Kan correspondence generates an equivalence of homotopy
categories between SptsAb and Ch(R).

3 Layer 3 - Local Homotopy Theory

In topological spaces, one can exploit the poset structure of open subsets on topological
spaces to define objects (such as sets of functions or more generally, algebraic objects) locally.
This is made precise in the definition of presheaves and sheaves.

• A presheaf F of abelian groups on a topological space X assigns an abelian group F(U)
to each open set U in X. If V ⊂ U then there is a restriction map resV U : F(U) →
F(V ) , satisfying certain compatibility conditions.(Precisely, a contravariant functor
(opS)op → Ab.) One could do the same thing with the category Ab replaced with any
other category.

• If a presheaf satisfies two further conditions named “locality” and ”glueing”, it is called
a sheaf.

• For a fixed x, one says that elements f ∈ F(U) and g ∈ F(V ) are equivalent at x if
there is a neighbourhood W ⊂ U ∩ V of x with resWU(f) = resWV (g) (both elements
of F(W ). The equivalence classes form the stalk Fx at x of the presheaf F .

For whatever reason, we would like to consider simplicial presheaves sPre and simplicial
sheaves sShv, where Ab above is replaced by sSet. To define the “local weak equivalences”
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on them, we exploit the underlying model structure on sSet to say that X
f−→ Y is a local

weak equivalence if it induces a weak equivalence of simplicial sets in every stalk Xx
fx−→ Yx.
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• From the sketch above, one can deduce model structures on sShv and sPre the adjoint
pair of functors L2 a i forms a Quillen equivalence between these categories. So, in
practice, it doesn’t matter if we consider simplicial sheaves or presheaves. (Drives
Algebraic Geometers nuts!)

• The impetus for doing this was to provide answers to old questions of Grothendieck and
also, to solve “local-to-global” problems in algebraic K-theory (such as the Lichtenbaum-
Quillen conjecture) in the early 80’s that demanded a language like this.

• One can also define “simplicial abelian presheaves” and presheaves over bounded chain
complexes. All of these things have local homotopy theories.

• The free-forgetful adjunction Quillen adjunction and the Dold-Kan correspondence is
an equivalence of categories.

4 Layer 4 - Local Stable Homotopy Theory

Adding one more layer in complexity, we can look at stable versions of the categories we
presented in the previous section.
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• Just like with sSet there was an associated theory of spectra, there is an associated
theory of spectra for sPre as well. The category of presheaves of spectra is denoted
pSpt. An object of this category is a functor E : Cop → SptsSet∗ which assigns an open
set U → E(U) which is a spectrum object in simplicial sets.
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• Spectra have stable homotopy groups so we can define local stable equivalence just by
restricting to stalks. So E → F is a local stable equivalence if Ex → Fx is a stable
equivalence of spectra for every x. From here on one can define a homotopy theory.

• We can also talk about spectrum objects in sPre(Ab), which I denote pSpt(Ab). pSpt
and pSpt(Ab) have a free and forgetful adjunction between them. Spectrum objects
in presheaves of bounded chain complexes are simply presheaves of unbounded chain
complexes Ch(Z). There is also an equivalence between pSpt(Ab) and pCh(Z).

• The category pSpt was the big context for problems in K-theory. It turns out that one
can use pSpt to study homotopy groups of spheres! This is because pSpt is involved in
elliptic cohomology theory and topological modular forms. This is where the modern
theory is.

• Voevodsky discovered during his work on the Milnor conjecture that maybe smashing
with S1 to define the spectrum wasn’t the right thing. So he defines a theory of
presheaves of T -spectra so that the list of spaces E now are connected by bonding
maps T ∧ En → En+1 where T = P1, the projective line defined over a scheme or
a field. Once we formally make An → ∗ a weak equivalence for each n within the
context of the Nisnevich topology and talk about T -spectra we have the motivic stable
category.

Motivic cohomology can then be described in this context, and this was what proved
the Bloch-Kato conjectures.

The pictures only get more complicated. This was the current state of knowledge by the
end of the 90’s, but people now don’t look at model structures anymore, but instead look at
∞-categories.
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